Experimente und Selbstversuche mit Browns Gas

broDer in NEXUS 75 veröffentlichte Artikel von George Wiseman zu Browns Gas (BG) hat mich dazu animiert, meine eigenen Versuche mit dem Gas wieder aufzunehmen. Ich hatte schon länger mit BG experimentiert, fühlte mich aber durch den Artikel motiviert, endlich mit dem Eigenversuch zu beginnen. Da ich völlig gesund bin und viel Sport treibe, waren für mich lediglich die angeblich wesentlich schnellere Regeneration nach dem Sport, der Anti-Aging-Aspekt und die präventiven Eigenschaften von BG interessant. Die eigentliche Motivation meiner Experimente ist aber die Weitergabe meiner Gerätschaften im Kreise meiner Verwandten, denn gerade für Senioren dürfte die Inhalation von Browns Gas sehr interessant sein.

BG besteht zu einem Drittel aus Sauerstoff und zu zwei Dritteln aus Wasserstoff. Vielen dürften die positiven Effekte einer zusätzlichen „Sauerstoffdusche“ bekannt sein – beim Wasserstoff sieht es schon anders aus. Dabei sind in den zahlreichen Forschungsberichten, wissenschaftlichen Beiträgen und mehr als 700 Studien, die die positiven gesundheitlichen Effekte von Wasserstoff belegen, fast alle Erkrankungen des modernen westlichen Menschen im höheren Alter zu finden: Demenz, Alzheimer, Diabetes, Bluthochdruck, Schlaganfall, Entzündungen, Rheuma, Parkinson, Allergien, Krebs, MS oder Psoriasis, um nur ein paar zu nennen. Links zu entsprechenden Studien finden Sie am Ende des Artikels. Diese beziehen sich alle auf Wasserstoff, also nur einen Teil von BG – die positiven Eigenschaften des zusätzlich enthaltenen Sauerstoffs wurden darin gar nicht untersucht. Doch der Reihe nach: Wie begann meine Faszination für Browns Gas?

Die ersten Schritte

Circa 2011 entdeckte ich auf Youtube die Videos von Peter Salocher zum Thema Browns Gas. Ich war sofort fasziniert und so entstand schnell die Idee, eine eigene „Zelle“ zu bauen. Lassen Sie mich kurz erklären, wie eine BG-Zelle aufgebaut ist und wie das Ganze funktioniert: Browns Gas, das im deutschsprachigen Raum oft als HHO bezeichnet wird, entsteht durch die Elektrolyse von Wasser. Falls Ihnen der Begriff Elektrolyse nicht mehr geläufig ist, dann stellen Sie sich einen Behälter mit destilliertem Wasser vor, in den zwei Metallplatten getaucht werden, die sich nicht berühren dürfen. Eine der Metallplatten ist mit dem Pluspol und die andere mit dem Minuspol einer Batterie verbunden. Destilliertes Wasser kann keinen Strom leiten, deshalb wird noch eine Substanz benötigt, welche die Leitfähigkeit des destillierten Wassers herstellt. Mit der Zuführung der später noch beschriebenen Chemikalie in das destillierte Wasser hätten wir dann eine stromleitfähige Flüssigkeit – die Elektrolytlösung. Nun fließt Strom durch das Wasser und zerteilt einzelne Wassermoleküle (H2O) in Wasserstoff und Sauerstoff. Das ist, extrem vereinfacht erklärt, der Vorgang der Elektrolyse in einem offenen Behälter. Dieser Behälter mit den Metallplatten nennt sich dann Zelle bzw. Elektrolyseur. In diesem speziellen Fall spricht man von einer Nasszelle, welche oft im Schulunterricht verwendet wird. Für unsere Zwecke ist die sogenannte Trockenzelle (engl. „Drycell“) jedoch interessanter. Bei der Trockenzelle sieht man von außen keine Elektrolytflüssigkeit mehr, sondern nur noch viele Metallplatten, Dichtungen und Schläuche. Die Elektrolytlösung befindet sich, umrandet von einer Dichtung, in dem etwa zwei Millimeter kleinen Spalt zwischen den Metallplatten. Damit neue Elektrolytflüssigkeit in die Trockenzelle gelangen kann und das entstandene Gas abgeleitet werden kann, sind Löcher in den Metallplatten vorhanden.

bg1

Kompletter Versuchsaufbau mit Elektrolytbehälter (Kanister, allerdings nicht lebensmittelecht), Zelle, Bubbler-Flaschen und Labornetzteil. Der Nasenschlauch liegt auf dem Netzteil.

Die ersten Zellen bastelte ich zusammen mit einem befreundeten Ingenieur, im Laufe der Zeit wurden sie dann immer größer und leistungsfähiger. Irgendwann waren es 1.200 Liter Gas pro Stunde bei 3.200 Watt Leistungsaufnahme. Das frisch produzierte Browns Gas kann man durch eine Schweiß- bzw. eine Lötdüse strömen lassen und entzünden. Hierbei erhält man eine hübsche hellblaue Flamme, mit der man im Keller viel Spaß haben kann.

Meine Experimente mit Browns Gas

Mit meiner BG-Flammen-Schweißdüse bewaffnet unterzog ich diverseste Materialien in meinem Keller einem Belastungstest. Die Effekte waren absolut faszinierend und unerklärlich. Ich konnte beispielsweise mit meinem Finger oder der ganzen Hand durch die Gasflamme fahren, ohne mich zu verletzen. In einer Maturaarbeit (Quelle am Ende des Artikels) über Browns Gas fand ich die Information, dass BG nur mit 140–180 Grad Celsius brennen soll. Die Besonderheit bei BG ist jedoch, dass die entstehende Temperatur nicht von der Flamme kommt, sondern erst in Verbindung mit dem jeweiligen Material entsteht – und das blitzschnell. Jegliches Material kann zum Schmelzen gebracht werden. Manche Materialien werden so heiß, dass sie die flüssig glühende Form überspringen und in Rauch aufgehen bzw. sublimieren.

Keramikpipes glühten bei meinen Versuchen beispielsweise in Sekundenbruchteilen so grell, dass mein ganzer Keller durch die Keramikpipe beleuchtet wurde. In das gleißende Licht konnte ich nur mit Schweißerbrille hineinsehen. Bei entsprechender Gasmenge beginnt die Keramikpipe zu schmelzen, was auf Temperaturen zwischen 2.000–3.000 Grad hinweist.

Oder nehmen wir das angeblich „temperaturstabilste“ Metall Wolfram. Der Schmelzpunkt von ca. 3.400 Grad wird übersprungen und sofort wird die Siedetemperatur von knapp 6.000 Grad erreicht. Somit fängt Wolfram nicht mal an zu glühen, sondern kollabiert unter der BG-Flamme sofort zu dunklem Rauch. Einen schönen Vorführeffekt ergibt auch gleißend hell blubberndes Lavagestein, das man sogar mit einem Stück Metall verbacken kann.

Eine weitere interessante Frage, die viele andere Experimentatoren beschäftigt, ist, ob BG explodiert oder implodiert. Ich würde sagen beides – nur nacheinander. Um das zu demonstrieren, kann man BG in eine stabile Plastikflasche füllen und einen Piezozünder in den Deckel kleben. Falls die Plastikflasche die Explosion übersteht, beginnt sich nach einigen Sekunden der Abkühlung die Flasche zusammenzuziehen. Es bildet sich ein Vakuum – nur ein Tropfen Wasser bleibt übrig. Aus ca. 1.860 Milliliter Browns Gas wird also ein Milliliter Wasser. Erst eine Explosion mit einer Detonationsgeschwindigkeit von 2,8 km/s – und dann langsam der Aufbau von einem fast perfekten Vakuum. Faszinierend, oder?

bg2

Eine EM-Keramikpipe, die mit BG instantan zum Glühen gebracht werden kann − es muss also irgendeine direkte „Interaktion"mit dem Material geben.

In weiteren Versuchen brachte ich Autokatalysatoren zum Glühen, um daraus vielleicht mal eine Heizung basteln zu können. Natürlich testete ich die BG-Zelle auch im PKW, merkte aber bald, dass sich der Spriteinspareffekt nur bei älteren Motoren ohne Lambdaregelung einstellte. Zu guter Letzt versuchte ich, einen Notstromgenerator auf BG-Betrieb umzurüsten. Dafür musste eine neue Zündanlage aufgebaut werden, die ich mithilfe eines befreundeten Ingenieurs später sogar zu einer Hochspannungs-Plasmazündanlage umrüstete. Das Resultat: Das Notstromaggregat lief mit 100 Prozent BG etwas über der Leerlaufdrehzahl – ein Overunity-Effekt war definitiv nicht zu beobachten. Interessant und lehrreich war es trotzdem, auch wenn es natürlich wenig Sinn macht, mit drei Kilowatt Strom Browns Gas zu produzieren, damit dann ein Motor mit zu niedriger Drehzahl und wenig Drehmoment läuft. Stanley Meyer soll seinen Buggy ja mit 100 Prozent Wasser betrieben haben, was mir nach dem Studium seiner Patente und Bauten absolut glaubwürdig zu sein scheint.

Während dieser Zeit des Bastelns habe ich in diversen Foren immer wieder über die angeblichen positiven Gesundheitsaspekte gelesen. Mehr als eine Minute Gasschnüffeln wurde damals aber nicht daraus. Meine Experimentierfreude ist dann irgendwann eingeschlafen – bis der NEXUS-Artikel von George Wiseman erschien.

Was braucht man alles für den Selbstversuch?

Der von George Wiseman empfohlene Elektrolyseur liegt bei ca. 2.500 Dollar, wobei vermutlich noch Steuern und Zölle hinzukommen. Die Alternative wäre es, sich diese Gerätschaften zum Beispiel auf Ebay zu kaufen. Hier dürfte man mit ca. 300 Euro sehr weit kommen. Benötigt werden eine Stromversorgung, der Elektrolyseur, ein Elektrolytbehälter, zwei Bubbler, der Nasenschlauch und etwas Werkzeug. Wenn ein klein wenig handwerkliches Geschick, eine Heißklebepistole und ein Lötkolben vorhanden sind, kann es losgehen.

Worauf man beim Kauf der Zelle achten sollte

Ich würde eine Trockenzelle empfehlen, da diese Zellen explosionsgeschützt, leistungsfähig und sehr günstig sind. George Wiseman empfiehlt, für gesundheitliche Zwecke circa 40 bis 60 Liter BG pro Stunde einzuatmen. Oft findet man bei Onlineangeboten jedoch nur die Gasleistung pro Minute. Hier sollte man sich immer an dem unteren Wert orientieren. Wenn der Zellenverkäufer von beispielsweise ein bis vier Litern pro Minute spricht, dann gehen Sie besser von einem Liter pro Minute aus. BG-Elektrolyseure werden im Dauerbetrieb sehr warm. Oft findet man auf Youtube diverse Videos fantastischer Hochleistungszellen mit schwindelerregenden Literzahlen. Wenn man auf das austretende Gas achtet, ist oftmals Wasserdampf zu sehen. Hat die Zelle allerdings erst einmal 80, 90 oder 100 Grad erreicht, dann tritt nicht nur BG aus dem Schlauch aus, sondern auch Elektrolyt mit Restbestandteilen von Natriumhydroxid bzw. Kaliumhydroxid. Die Elektrolytlösung besteht aus destilliertem Wasser und etwas Lauge, um die Stromleitfähigkeit zu gewährleisten – diesen Dampf will sicher niemand in der Lunge haben. Somit sind nur Zellen interessant, die möglichst lange betrieben werden können, ohne heiß zu werden. Sie sollten also lieber eine größere Zelle kaufen, am besten eine, die theoretisch fünf Liter BG/HHO pro Minute herstellen kann. Damit ist gewährleistet, dass die Zelle bei einem Liter pro Minute länger kühl bleibt.

Kommentare

17. Juli 2018, 09:56 Uhr, permalink

Horst Thuy

Eine Anmerkung zum Artikel "Brownsgas im Eigenversuch" der letzten Ausgabe.

Im Artikel schrieb ich: "George Wiseman empfiehlt ca. 40-60 Liter BG pro Stunde". Eine Leserin, welche sich das Gerät von George Wiseman gekauft hat, wies mich darauf hin, dass George lediglich 18-20 Liter BG-Gas pro Stunde empfiehlt.

Lt. einer Untersuchung der TU-Braunschweig atmet man durchschnittlich 17 mal pro Minute ca. 0,5 Liter Luft ein. Das Einatmen dürfte somit bei knapp zwei Sekunden liegen, in denen bei bei 60 Litern BG/Std. bzw. 40 Litern H2/Std. in etwa 22ml H2 einatmet. Damit liegt der "TU-Durchschnittsmensch" bei knapp 4,5% H2-Atemgaskonzentration, was theoretisch schon eine brennbare Mischung wäre. Laut Wikipedia soll eine explosive Mischung erst bei 18% Wasserstoffkonzentration in der Luft vorhanden sein - andere Quellen sprechen schon ab 4% Konzentration von einer Gefahr. Somit macht es also aus Sicherheitsgründen durchaus Sinn, sich an dem niedrigeren Wert zu orientieren. Im Artikel "Brown´s Gas for Health" (Walter Last with George Wiseman) war folgendes zu lesen: " Undiluted BG has a hydrogen concentration of 66.6%, and his generator produced 75 litres of BG. As usual, he felt great and energetic during the inhalation, but something very unusual showed up in the blood picture. "
Weiter unten im Artikel ist jedoch noch folgender Hinweis zu finden: "To keep the hydrogen concentration of the inhaled gas below 4% the BG volume should be adjusted to about 18 to 20 litres. That should not be necessary when inhaling from a bottle. However, G.W. is still inhaling BG at 8 to 9% with a cannula for several hours on most days."

Lt. diesem Hinweis "schnüffelt" George Wiseman 75 Liter BG pro Stunde - empfiehlt aber aus Sicherheitsgründen seinen Kunden lediglich 18-20 Liter BG pro Stunde. Vergessliche Indoor-Raucher mit kleinem Lungenvolumen sollten vielleicht sogar noch niedrigere Gasmengen vorziehen ;-)

09. September 2018, 14:49 Uhr, permalink

Jürgen J Jansen

Sicherheit steht bei George Wiseman an erster Stelle. Das ist der Grund und die lebenslange Garantie, dass wir den AquaCure H2 nun auch in Deutschland anbieten. Sollte problemlos in Google gefunden werden

Kommentar schreiben

Folgende Art von Kommentaren sind unerwünscht und werden von uns entfernt:

  • (Schleich-)Werbung jedweder Art
  • Kommentare die nichts zum Thema beitragen
  • Kommentare die der deutschen Sprache nicht gerecht werden
  • Geplänkel mit anderen Kommentarschreibern
  • Kontaktanfragen an die Redaktion (benutzen Sie hierfür bitte das Kontaktformular)

Bitte beachten Sie unsere Datenschutzhinweise